

Executive Summary

The Executive Summary compiles key information from the community profiles (i.e., [Section 2](#)), provides an overview of the key trends observed through the benchmarking process (i.e., [Sections 3–5](#)), and is designed to provide 'at a glance' information that will help NSWBI members write internal and public reports, such as those submitted to their Council. The Executive Summary has been prepared in two parts:

> [Part 1](#) provides an overview of the changes made to this year's benchmarking process, a discussion of key trends and results from the benchmarking exercise, and improvements that the communities have identified as necessary to continue to evolve and improve NSWBI in the future. The graphs and information provided in this section do not contain attribution to any specific community. This was

done intentionally to enable communities to quote the information in reports without further permissions being required. If a community wished to attribute any results derived to another community, that community's written permission would be required.

> [Part 2](#) provides a summary of key publicly available information about member communities, such as their goals and targets, priority areas of work for the current fiscal year (i.e., 2025), the types of collection services provided, the types of collection containers provided, as well as the communities' fee structures. As this information is publicly available, it may be quoted and attributed to other communities without further written permission. The data and information provided in this section include the benchmarking data year (i.e., 2024) as well as the current fiscal year (i.e., 2025). This was intentionally to assist with current state jurisdictional scans.

PART 1 - BENCHMARKING OVERVIEW

Improvements Made in 2025

In 2024, two key improvements were made to NSWBI that streamlined and improved how benchmarking data were collected and how results were provided to communities:

> First, the data portal was merged with the Canadian Infrastructure Benchmarking Initiative. This change allowed online data entry into a streamlined and modern data platform.

> Second, the benchmarking data were entered into a Power BI system that enables communities to manipulate and view their results in ways they couldn't before. This includes generating custom graphs comparing their performance on specific KPIs to other communities while removing attributions.

Both the data portal and Power BI platform are tools designed to be continually improved over time, enabling ever-more accurate community-by-community comparisons that will enhance each community's ability to learn from their peers.

In NSWBI 2025, several additional enhancements to the NSWBI benchmarking process were made, including:

- > Updating the phrasing of some questions in the data forms to prompt more accurate reporting.
- > Collecting new data on collection fleets.
- > Updating the data and information collected about construction and demolition waste diversion and management.
- > Updating the data and information collected about industrial, commercial, and institutional waste (ICI) waste diversion and management.

- > Organizing the data collected on organic wastes (i.e., pet waste, food waste, leaf and yard waste, and 'other organics') by starting each category with the word 'organic' - e.g., Organic-pet waste. This small change ensures that all organic wastes are graphed in close proximity, which enables easier visualization of the impacts of their collective contribution to the overall organics stream.
- > Adding an 'Organics-leaf & yard waste' category.

As a consequence of these changes, several communities identified past errors in their data entry that were able to be updated.

Key Benchmarking Highlights

NSWBI 2025 compares communities on their 2024 solid waste management performance. There were few significant changes observed in performance between the 2023 to the 2024 benchmarking years, which is expected given that few of the communities implemented significant changes to their system in 2024. However, with the shift in funding and management of residential recycling systems from municipally-funded and operated systems to jurisdiction-wide EPR systems in 2025, NSWBI communities expect there will be significant shifts in costs and outcomes over the next several years.

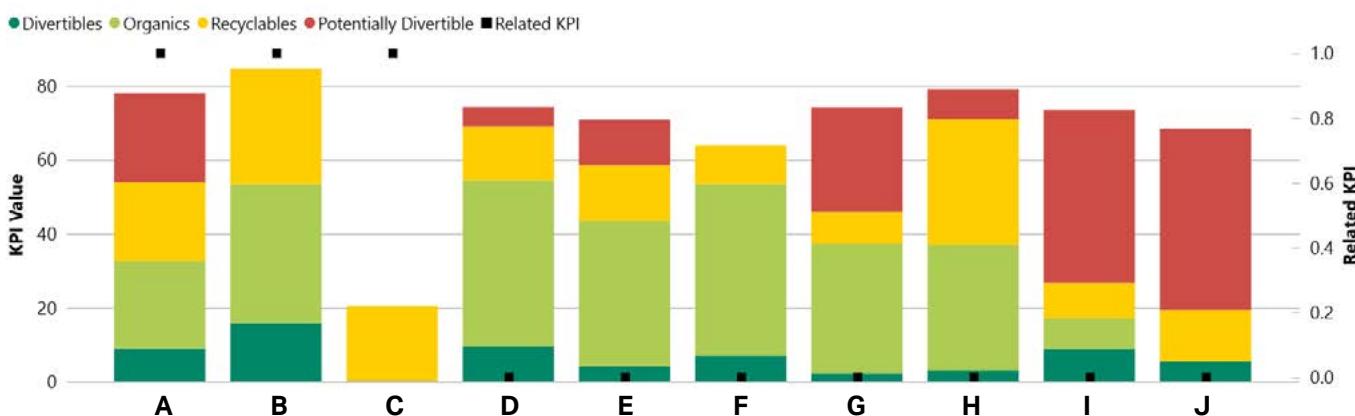


Figure ES.1: Recoverables in the Garbage Stream

Goal 3: Customer Behaviour, Recoverables in the Garbage Stream

This report marks the second year that this KPI—Recoverables in the Garbage Stream—has been included in this report. It measures the amount of potentially recoverable material that is found in the garbage stream, and it is an indicator of how local diversion systems are operating. As municipalities shift towards having less control over the performance of EPR-regulated recycling systems, measuring the amount and type of recoverables in the garbage stream is a key piece of data that municipalities can use to report to their provincial regulators on the performance of regulated EPR systems and advocate for improved regulations. (Note, improving EPR regulations can mean enforcing outcomes, but it can also mean widening the materials targeted by EPR systems. To see which materials are designated under EPR systems Canada-wide see [Appendix C](#) of this report.)

To generate the outputs of this KPI, the amount of recoverables (i.e., recyclables, organics, and 'other divertible materials) are calculated from the results of community waste audits. For each category of targeted material, a community notes if it is recoverable in a local diversion stream that is operated by the community, an EPR or product stewardship operator, or another known diversion avenue (e.g., textiles collection by local charities). The provides a snapshot of the materials that are locally recoverable but ending up in the garbage stream. In

For the 2024 data year, the results of four KPIs are highlighted below:

1. Recoverables in the Garbage Stream.
2. Residential Waste Collected at the Curb per Household.
3. Processing Cost per Tonne Accepted Material at Organics Facility.
4. Residential Curbside Organics Collection Rate.

addition to this, the "potentially divertible materials" are then calculated, again using data from each community's waste audits. Potentially recoverable materials are those that are not accepted in your community but are accepted by other communities. Identifying potentially recoverable materials helps communities identify opportunities to improve their own diversion systems or advocate for improved provincially regulated EPR or stewardship systems. The residual category are those materials that are not recoverable locally or by another community.

Note: in the graph above, **Community C** identified all the targeted material categories as potentially locally recoverable. As a result, all of the materials in this graph are considered 'recoverable' locally or potentially recoverable in another community.

[Figure ES.1](#) provides the results of benchmarking 'Recoverables in the Garbage Stream'. The results show that the biggest opportunities for potentially recoverable items were:

- > C&D waste;
- > textiles;
- > organics, especially pet waste; and
- > flexible Plastics, which are currently recoverable in British Columbia and Saskatchewan's EPR systems for PPP.

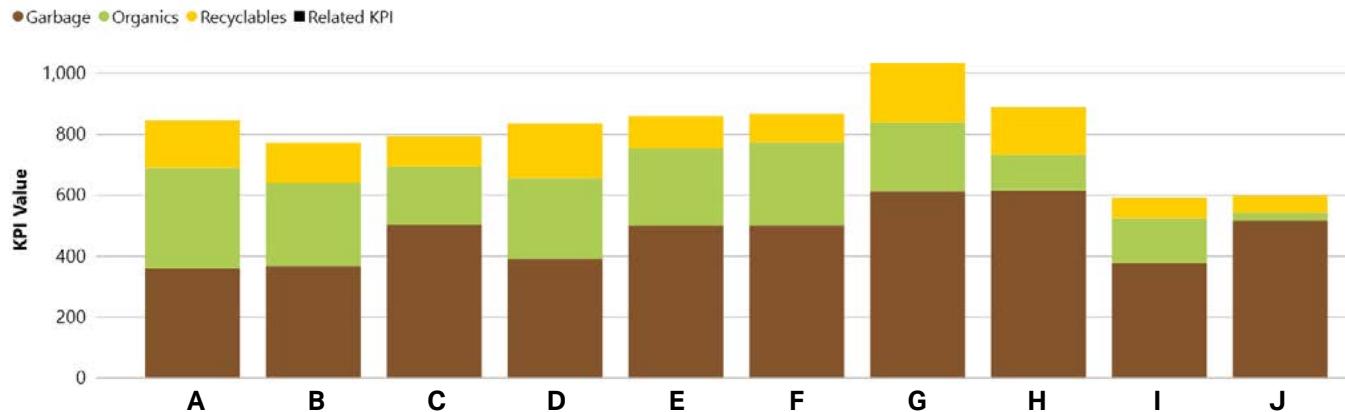


Figure ES.2: Residential Waste Collected at the Curb per Household

Goal 2: Waste Reduction, Residential Waste Collected at the Curb per Household

This KPM — Residential Waste Collected at the Curb per Household — provides a snapshot of waste generation at curbside patterns across three streams (i.e., organics, recyclables, and garbage). This information can be used to inform collection and processing contracts, municipal planning, and prioritizing waste reduction efforts.

The results of this benchmarking shows that the total amount of waste generated and then set out for collection at curbside ranges from 590 to 1,031 kilograms per household, with garbage making up the majority of the waste generated at curbside. As noted, in the discussion of the KPI: Recoverables in the Garbage Stream, this is likely because divertible materials are being disposed in the garbage stream.

However, the wide variance in generation could be for many reasons: e.g., local diversion programs pushing more materials away from curbside collection into diversion streams like EPR-operated collection systems or local circular economy initiatives; local distribution bans for single-use items preventing waste; higher or lower local flora growth due to weather patterns, precipitation rates, and native plant lifecycles; at-home composting of leaf and yard waste; and even local economic conditions making it more or less likely for added consumerism. The cause of reduced generation per capita cannot be drawn directly from this report.

Figure ES.2 shows that **Communities A and B** on the chart (i.e., from the left) are generating nearly as much garbage as they are generating organics. Compare this to **Communities G and H** which are generating far more garbage at the curb compared to organics. In part this result is simply due to **Communities A to F** having fulsome organics programs (i.e., wider range of organics targeted for diversion and year-round organics collection), which makes them more capable of pulling organic materials into the organics stream. The communities with the lowest ratio of organics to garbage generated (i.e., **Communities H and J**) offer only leaf and yard waste collection programs. **Community G** which also produces a low organics to garbage ratio, only offers opt-in organics collection in the summer months.

Seven of the ten communities are hovering in overall waste generation near 800 kg/capita and one community is exceeding 1000 kg/capita; compare this to **Communities H and J** whose generation per capita is 600 kg/capita or less. The reasons for lower generation are a direct output of this KPI and are worthy of further investigation to inform communities' waste reduction goals, where applicable.

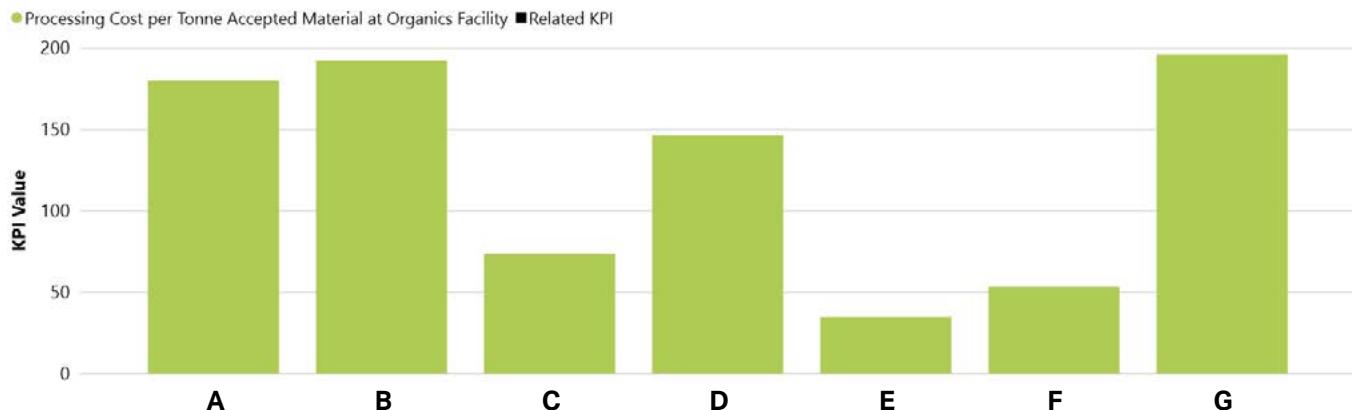


Figure ES.3: Processing Cost per Tonne Accepted Material at Organics Facility

Goal 1: Be Financially Sustainable, Processing Cost per Tonne Accepted Material at Organics Facility

This KPI — Processing Cost per Tonne Accepted Material at Organics Facility — shows the relative cost of processing a tonne of organic waste for those communities reporting processing costs. This KPI was presented in the NSWBI 2024 Annual Report and is updated here.

The cost to treat organics will vary greatly depending on the technology and feedstock type (e.g., windrow, static pile, aerated static pile, in-vessel composting, or anaerobic digestion). Across NSWBI communities, none operate identical systems. As a result, apples-to-apples comparisons are challenging. However, this KPI still provides information that benefits community's systems planning, including observing the effect of other communities making changes to their existing systems or implementing new facilities.

Figure ES.3 shows that in 2024 there was a wide variance in the costs observed from \$35/tonne to \$196/tonne of organic material processed. However, when compared to 2023, in which communities reported a variance of

\$27/tonne to \$463/tonne, we see that both 'high-end' of the costs have decreased, and the overall cost variance has decreased. However, the decrease in the highest reported costs from \$463/tonne to \$196/tonne can be explained. **Community D** saw a 68% decrease from 2023 due to two factors: 1) experiencing lower reported costs, and 2) including a second organics facility in their data call, which had been missed in previous years. The addition of the second facility increased the calculated tonnage processed by 20,000 tonnes and lowered their overall cost/tonne as a result.

While **Community C** saw a dramatic reduction in processing costs, another saw a 47% increase. However, this too can be readily explained. This increase was a direct result of their realizing a full year of operations of their new organics facility in 2024, compared to only a partial year of operation in 2023. This changes resulted in increased tonnage being processed at the facility, and consequently higher operation costs.

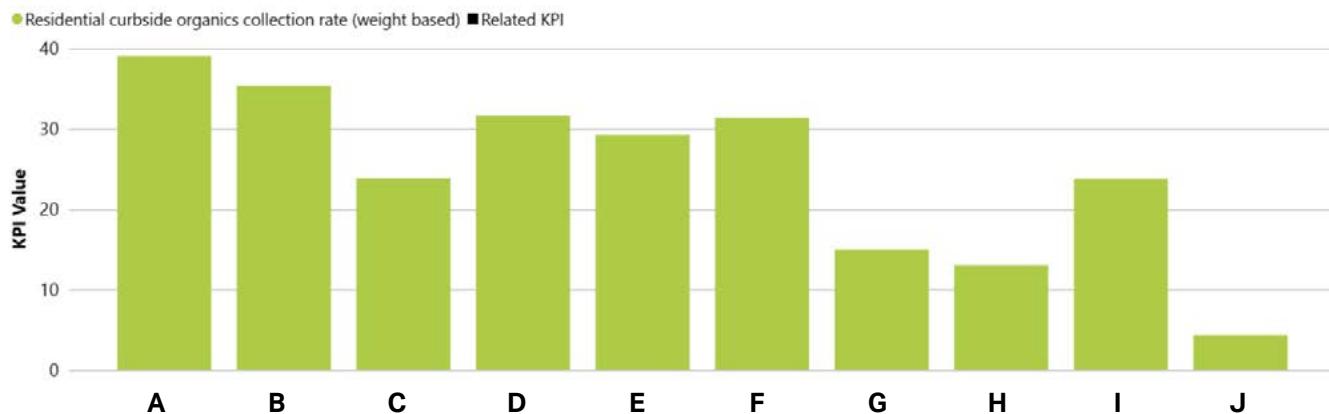


Figure ES.4: Residential Curbside Organics Collection Rate (% weight)

Goal 3: Customer Behaviour, Residential Curbside Organics Collection Rate (% weight)

This KPM — Residential Curbside Organics Collection Rate — provides insight into how much organic waste is being diverted from the garbage stream at curbside. The results of this benchmarking show that the types of organics collection programs (i.e., leaf and yard only versus co-mingled organics, summer-only versus year-round) greatly contribute to how much organics are collected at the curb. When considering the results of this graph and alongside the 'Recoverables in the Garbage Stream' graph, it becomes apparent that communities can have a significant impact on their waste disposal rates by improving organics collection and processing systems.

The results of this benchmarking show that those communities that have limited curbside organics collection programs – such as **Community G** – collect a lower percentage of organics overall in their total curbside collection waste stream. For example, for **Communities H and J** who have only yard waste or summer-only organics collection systems, collect only 4 - 15% organics curbside. Compare this to communities with year round and co-mingled organics curbside collection, which collect 24 - 39% of total curbside waste.

Future Planning

NSWBI members have identified future improvements they would like to see to the data forms and Power BI. These include:

- > Creating a tabular summary sheet of the calculations (numerators/denominators) for each KPI that is undertaken in Power BI to facilitate each community's ability to more efficiently undertake their own QA/QC of the data entered and the calculation outputs. This summary sheet was previously available in an Excel format before the switch to Power BI, and NSWBI communities have identified it as a valuable and necessary tool that they want reinstated.
- > Adding more 'related factor' options to each of the KPI graphs. This change would allow communities to better visualize the impact of the differences between communities on results (e.g., types of feedstock collected, the collection frequency).
- > Reviewing the data collected for 'collection fleets' to determine if the right information is being collected, how frequently it needs to be collected, and whether any other streamlining could be enabled.

NSWBI communities have also identified that they would like to see the Final Report further streamlined. Opportunities identified include:

- > removing reporting on 'non-key' KPIs from the final report (while continuing to enable them on Power BI);
- > moving [Appendix C](#), which provides links to regulations, legislation, bylaws, and other resources, from the report to the NSWBI website.

Finally, at the Annual Summary Workshop, communities agreed that on a go-forward basis, decision-making to improve the data collection and final report would only require a two-thirds majority vote, instead of unanimity, and that communities could abstain from a vote. Communities believe that this change will help to enable faster improvements to overall reporting.

Future improvements to the data portal, Power BI, and the final report will be discussed at the NSWBI 2026 workshop series.